

 MathVec++

User’s Reference Manual

Version 1.0

September 23, 2009

MathVec++ User’s Reference Manual

 - 1 -

MathVec++

Releases

1.0 Code released 09/23/09
Code version Description Date

Copyright and License

MathVec++ 1.0, Copyright (c) 2009
by Alejandro A. Ortiz,
alortiz@ucdavis.edu
http://www.computationalmechanics.org/~aortizb
Department of Civil & Environmental Engineering,
University of California, Davis, CA 95616, U.S.A.
All Rights Reserved.

Your use or distribution of MathVec++ or any derivative code implies that you
agree to this License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. This program is free software and you can choose any
of the following license terms:

1) GNU Lesser General Public License (LGPL) as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later
version. For details see copy of LGPL in folder License\gnu of this
distribution.

2) Alternatively, you may choose to comply with the following UMFPACK-style
license:

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED OR
IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program, provided that the
Copyright, this License, and the Availability of the original version is
retained on all copies. User documentation of any code that uses this code or
any derivative code must cite the Copyright, this License, the Availability
note, and "Used by permission". Permission to modify the code and to
distribute modified code is granted, provided the Copyright, this License, and
the Availability note are retained, and a notice that the code was modified is
included. This software is provided to you free of charge.

MathVec++ uses TAUCS, A library of Sparse Linear Solvers by permission of
Sivian Toledo. You must comply with TAUCS license terms. For details see
folder libs/taucs of this distribution.

MathVec++ User’s Reference Manual

 - 2 -

TABLE OF CONTENTS

1 Scope of the manual ...3

2 Building MathVec++..3

2.1 Building MathVec++ under Windows..3

2.2 Building MathVec++ under Linux/Unix..3

3 Using MathVec++ template...4

4 Solving a linear system of equations with MathVec++ ..9

5 Acknowledgements...10

MathVec++ User’s Reference Manual

 - 3 -

1 Scope of the manual

The aim of this manual is to explain how to use MathVec++. MathVec++ is a template
header that simplifies matrix-vector operations. Matrix-vector operations are designed for small
matrices since it uses direct implementations. However, it can solve large sparse linear sys-
tems very efficiently due to its interface to TAUCS library. The complete source code of Math-
Vec++ can be downloaded from http://www.computationalmechanics.org/~aortizb/codes.

2 Building MathVec++

This manual explains how to build MathVec++ under Windows® and Linux/Unix. MathVec++
consists of one template header file available in ‘src’ folder: mathvec.h. MathVec++ uses
TAUCS1 library which needs to be linked. I have provided precompiled TAUCS libraries along
with ATLAS libraries used by TAUCS, for both Windows® and Linux in folder ‘libs\taucs’. You
do not need to build them again unless you want optimized libraries for your system. If you are
in need of information on building TAUCS, you may find more information at TAUCS manual
and http://matrixprogramming.com/.

2.1 Building MathVec++ under Windows

If you decide to build MathVec++ in Windows®, I highly recommend using Microsoft Visual
Studio®. There is an express edition available at Microsoft® web site for free. Also, Profes-
sional edition of MVS is free for students. I have provided the MVS 2008 project for the Win-
dows version of MathVec++ in this distribution. Unless you use other compiler there is nothing
more to do. See MathVec++ project properties in the MVS 2008 project to find out includes and
linking options to precompiled TAUCS and ATLAS libraries. Note that runtime library under C-
C++ -> Code Generation has been specified to /MTd which is how precompiled TAUCS librar-
ies were built. Also, LIBCMT library in Linker -> Input has been ignored since it conflicts with
TAUCS libraries. If you need to rebuild TAUCS libraries in MVS, please see
http://matrixprogramming.com/ for details. Then link them considering the observations pro-
vided above. Linking TAUCS libraries to MathVec++ in a compiler other than MVS might re-
quire rebuilding of TAUCS libraries.

Once the MVS project is in your machine, you can see and try the test file ‘main.cpp’ in-
cluded in ‘src’ where some of the capabilities of MathVec++ are tested. You just need to build
the solution in the MVS GUI: Build -> Build solution or by pressing F7. If you want to try other
examples, the only thing you need to do is to modify the code in main.cpp and rebuilt it. When
you build or rebuild the code, an executable file called ‘MathVec++’ is placed in ‘bin’ folder. You
have to run that executable from command line (cmd). This will print the numerical computation
to the screen. Since this template was thought to be used along with other’s code, no output file
is provided.

There is another alternative to install MathVec++ under Win32. For example, you may
use gcc compiler for Windows®, such as MinGW or Cygwin. Though, I will not cover these
options here since I have not tried a compiler other than MVS and it might require the rebuilding
of TAUCS libraries with gcc. If you need to do it, please download the source files from TAUCS
web site and consult TAUCS manual for more information.

2.2 Building MathVec++ under Linux/Unix

Building MathVec++ under Linux/Unix might be the easiest way. Once you have the Linux/Unix
version of MeshFree++ distribution in your machine, you just need to type ‘make’ or ‘make
MathVec++’ in the main folder of MathVec++ distribution. You may find all the options in the
makefiles that are provided in the main folder and in ‘src’ folder. You need to modify the paths
to TAUCS and ATLAS libraries if you want to use your own libraries. Instructions are provided
in the makefile of ‘src’ folder.

1 TAUCS, A Library of Sparse Linear Solvers is used by permission of Sivan Toledo. Original files of TAUCS are avail-
able at http://www.tau.ac.il/~stoledo/taucs/.

MathVec++ User’s Reference Manual

 - 4 -

 If you need to rebuild TAUCS libraries, download the source code from TAUCS web
site and read TAUCS manual for instructions. Building of TAUCS libraries in Linux/Unix is quite
straightforward.

3 Using MathVec++ template

The best way to see how MathVec++ works is through an example. The following code is actu-
ally the code provided in ‘src’ folder. It shows most of the capabilities of MathVec++. For other
functions available in MathVec++ see ‘mathvec.h’ located in ‘src’ folder. Every function defini-
tion in ‘mathvec.h’ is preceded by a brief description of what the function does.

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;

// include the MATRIX-VECTOR template
#include "mathvec.h"

/**
* MAIN FUNCTION TO TEST THE MATRIX-VECTOR TEMPLATE MathVec++ *
**/

int main()
{
 // initiate a vector of three components (all elements are 2)
 Vec<double> x(3,2); // create a vector of size 3 with all entries = 2

 // modifiy components of vector x, so that all are 3
 x(0) = 3;
 x(1) = 3;
 x(2) = 3;

 // multiply a vector by a scalar
 Vec<double> d1 = 2*x;
 Vec<double> d2 = 2.2*x;
 Vec<double> d3 = x*2;
 Vec<double> d4 = x*2.2;

 // divide a vector by a scalar
 Vec<double> c1 = x/2;
 Vec<double> c2 = x/2.2;

 // create an empty vector and use push_back method to fill it
 Vec<double> c3; // create an empty vector which has to be filled with numbers
 // before doing any other operation.
 // let's make the following vector: {2.3, 4.7, 8}
 c3.push_back(2.3); // push the first number
 c3.push_back(4.7); // push the second number
 c3.push_back(8); // push the third number

 // generate a vector of all entries equal to a number
 Vec<double> c4 = c3; // let's copy c3 into c4 (so, c4 = {2.3, 4.7, 8})
 c4 = 7.5; // change all entries of c4 to 7.5

 // substract two vectors
 Vec<double> e1 = x - 2*x;

 // add two vectors
 Vec<double> e2 = x + x;

 // multiply the current vector by a scalar
 Vec<double> y = x;
 y *= 4; // can also do: Vec<double> y1 = (y *= 4);

 // divide the current vector by a scalar
 Vec<double> z = x;
 z /= 2.5;

 // dot (scalar) product
 Vec<double> t(3); // create a vector of size 3 with all entries = default for
 // type double
 t(0) = 2; // modify vector entries

MathVec++ User’s Reference Manual

 - 5 -

 t(1) = 2;
 t(2) = 2;
 double scalar = x*t; // dot product

 // euclidean norm of a vector
 Vec<double> k = t;
 double enorm = k.norm();

 // substract a vector from the current vector
 Vec<double> s1(4,5); // create a vector of size 4, all entries = 5
 Vec<double> s2(4,6); // create a vector of size 4, all entries = 6
 Vec<double> s3 = (s1 -= s2); // or simply s1 -= s2 and then print the value of
 // s1

 // add a vector from the current vector
 Vec<double> m1(4,5); // create a vector of size 4, all entries = 5
 Vec<double> m2(4,6); // create a vector of size 4, all entries = 6
 m1 += m2; // can also do: Vec<double> m3 = (m1 += m2);

 // the negative of a vector
 Vec<double> m4(4,1); // create a vector of size 4, all entries = 1
 Vec<double> m5 = -(m4);

 // sum all entries of a vector
 Vec<double> m6(5,1); // create a vector of size 5, all entries = 1
 m6(2) = 6.2;
 double sum1 = m6.sum();

 // test begin() and end() iterators with max() and min() functions
 Vec<double> m7;
 m7.push_back(2.7);
 m7.push_back(1.2);
 m7.push_back(3.5);
 m7.push_back(4.256);
 double maxNumber = m7.max();
 double minNumber = m7.min();

 // declare a matrix
 Mat<double> H(3,3,6); // 3x3 matrix, all entries = 6
 H(0,0) = 1; // modify
 H(0,1) = 0; // to create
 H(0,2) = 0; // an
 H(1,0) = 0; // identity matrix
 H(1,1) = 1;
 H(1,2) = 0;
 H(2,0) = 0;
 H(2,1) = 0;
 H(2,2) = 1;

 // create an empty matrix and use push_back method to fill it
 Mat<double> H1; // create an empty matrix which has to be filled with row
 // vectors
 // before doing any other operation.
 // let's do it for a 3x3 matrix, all entries = 4.7
 Vec<double> vec1(3,4.7); // the row vector, all entries = 4.7
 H1.push_back(vec1); // push the first row
 H1.push_back(vec1); // push the second row
 H1.push_back(vec1); // push the third row

 // create a matrix filled of a number
 Mat<double> H2 = H1; // let's copy H1 into H2 (so 3x3 matrix, all entries = 4.7)
 H2 = 3.9; // let's change all entries of H1 to 3.9

 // add two matrices
 Mat<double> M(2,2); // 2x2 matrix all entries = default value for type double
 Mat<double> N(2,2,2); // 2x2 matrix all entries are = 2
 M(0,0) = 4; // modify
 M(0,1) = 2; // the entries
 M(1,0) = 2; // of
 M(1,1) = 4; // the matrix
 Mat<double> F1 = M + N;

 // substract two matrices
 Mat<double> F2 = M - N;

 // add a matrix to the current matrix

MathVec++ User’s Reference Manual

 - 6 -

 Mat<double> F3 = (M += N); // or simply M += N and then print the value of M

 // substract a matrix to the current matrix
 Mat<double> F4 = (N -= N); // or simply N -= N and then print the value of N

 // multiply a matrix by a scalar
 Mat<double> P(3,3,2); // 3x3 matrix, all entries are = 2
 Mat<double> P1 = P * 2.2;

 // multiply a scalar by a matrix
 Mat<double> P2 = 2.2 * P;

 // multiply current matrix by a scalar
 Mat<double> P3 = (P *= 3);

 // divide a matrix by a scalar
 Mat<double> V(3,3,2); // 3x3 matrix, all entries are = 2
 Mat<double> V1 = V / 1.5;

 // multiply a matrix by a vector
 Mat<double> Z(3,2,1); // 3x2 matrix, all entries are = 1
 Vec<double> b(2,3); // vector of size 2, all entries = 3
 Vec<double> b1 = Z*b;

 // multiply a vector by a matrix
 Mat<double> J = Z.transpose();
 Vec<double> b2 = b*J;

 // multiply a matrix by a matrix
 Mat<double> S1(2,3,2); // 2x3 matrix, all entries = 2
 Mat<double> S2(4,2,2); // 4x2 matrix, all entries = 2
 Mat<double> S3 = S2 * S1;

 // multiply current matrix by a matrix
 Mat<double> S4(3,2,2); // 3x2 matrix, all entries = 2
 Mat<double> S5(2,3,3); // 2x2 matrix, all entries = 3
 Mat<double> S6 = (S4 *= S5); // or simply S4 *= S5 and then print the value of
 // S4

 // the negative of a matrix
 Mat<double> S7(3,3,1); // 3x3 matrix, all entries = 1
 Mat<double> S8 = -(S7);

 // transpose of a matrix
 Mat<double> S9(3,3,6); // 3x3 matrix, all entries = 6
 S9(2,0) = 1; // change
 S9(2,1) = 1; // last row
 S9(2,2) = 1; // of S9
 Mat<double> S10 = S9.transpose(); // will NOT change S9. it only returns a new
 // object

 // transform the current matrix into its transpose
 Mat<double> T1(3,2,8); // 3x3 matrix, all entries = 8
 T1(2,0) = 1; // change
 T1(2,1) = 1; // last row
 T1.makeTranspose(); // will change T1 and return a reference, so can also do:
 // Mat<T> T2 = T1.makeTranspose(); in which case both
 // T2 and T1 will be the transposed matrix

 // get a row of a matrix
 Mat<double> D1(3,3,7); // 3x3 matrix, all entries = 7
 D1(2,0) = 2; // change
 D1(2,1) = -3; // the third row
 D1(2,2) = -6; // of D1
 Vec<double> a1 = D1.getRow(3); // the third row. note that the the number of
 // rows starts from 1, but the index from 0.

 // get a column of a matrix
 Mat<double> D2(3,3,7); // 3x3 matrix, all entries = 7
 D2(0,1) = 1; // change
 D2(1,1) = -4; // the second column
 D2(2,1) = -1; // of D2
 Vec<double> a2 = D2.getCol(2); // the second row. note that the the number of
 // rows starts from 1, but the index from 0.

 // transform a matrix into a null matrix

MathVec++ User’s Reference Manual

 - 7 -

 Mat<double> D3(3,3,2.4); // 3x3 matrix, all entries = 2.4
 D3.makeNull(); // change the entries of D3 and returns a reference,
 // so can also do: Mat<double> D4 = D3.makeNull();
 // in which case both D4 and D3 are null matrices.

 // transform a matrix into a unit matrix
 Mat<double> D4(3,3,6.2); // 3x3 matrix, all entries = 6.2
 D4.makeUnit(); // change the entries of D4 and returns a reference,
 // so can also do: Mat<double> D5 = D4.makeUnit();
 // in which case both D5 and D4 are unit matrices.

 // transform a matrix into an identity matrix
 Mat<double> D5(3,3,9.8); // 3x3 matrix, all entries = 9.8
 D5.makeIdentity(); // change the entries of D5 and returns a reference,
 // so can also do: Mat<double> D6 = D5.makeIdentity();
 // in which case both D6 and D5 are identity matrices.

 // compute the 1-norm of a square matrix
 // (naive code ... not good for large matrices)
 Mat<double> D6(2,2); // 2x2 matrix, all entries = default double type
 D6(0,0) = 1; // set the entries
 D6(0,1) = 1; // such that
 D6(1,0) = 1; // the matrix is
 D6(1,1) = 1.000000001; // ill-conditioned
 double norm1 = D6.norm1();

 // compute the condition number of a small square ill-conditioned matrix
 double condSmall = D6.smallCond1(); // small matrices are up to 3x3

 // compute the condition number of a square ill-conditioned matrix
 // using the function for large matrices
 double condLarge = D6.largeSymmCond1();

 // compute the determinant of a square ill-conditioned matrix.
 // small matrix max size = 3x3
 double det = D6.smallDet();

 // compute the inverse of a small square ill-conditioned matrix
 Mat<double> D7 = D6.smallInv(); // small matrices are up to 3x3

 // compute the inverse using the function for large square matrix
 Mat<double> D7a = D6.largeSymmInv();

 // sum all the entries of a row of a matrix
 Mat<double> D8(4,4,1); // 4x4 matrix, all entries = 1
 D8(0,1) = 3.2;
 D8(1,0) = 6.2;
 double sum2 = D8.sumRow(2); // the second row. note that the the number of
 // rows starts from 1, but the index from 0.

 // sum all the entries of a column of a matrix
 double sum3 = D8.sumCol(2); // the second column. note that the the number of
 // columns starts from 1, but the index from 0.

 // print size of a vector
 cout << "Size of x: " << x.size() << endl;
 cout << "Size of d1: " << d1.size() << endl;

 // print size of a matrix
 cout << "Number of rows of H: " << H.rows() << endl;
 cout << "Number of columns of H: " << H.cols() << endl;

 // print vectors, matrices and variables
 cout << "x:" << endl;
 cout << x << endl;
 cout << "d1:" << endl;
 cout << d1 << endl;
 cout << "d2:" << endl;
 cout << d2 << endl;
 cout << "d3:" << endl;
 cout << d3 << endl;
 cout << "d4:" << endl;
 cout << d4 << endl;
 cout << "c1:" << endl;
 cout << c1 << endl;
 cout << "c2:" << endl;

MathVec++ User’s Reference Manual

 - 8 -

 cout << c2 << endl;
 cout << "c3:" << endl;
 cout << c3 << endl;
 cout << "c4:" << endl;
 cout << c4 << endl;
 cout << "e1:" << endl;
 cout << e1 << endl;
 cout << "e2:" << endl;
 cout << e2 << endl;
 cout << "y:" << endl;
 cout << y << endl;
 cout << "z:" << endl;
 cout << z << endl;
 cout << "t:" << endl;
 cout << t << endl;
 cout << "Dot product: " << scalar << endl;
 cout << "Euclidean norm: " << enorm << endl;
 cout << "s1:" << endl;
 cout << s1 << endl;
 cout << "s3:" << endl;
 cout << s3 << endl;
 cout << "m1:" << endl;
 cout << m1 << endl;
 cout << "m5:" << endl;
 cout << m5 << endl;
 cout << "sum1:" << endl;
 cout << sum1 << endl;
 cout << "maxNumber:" << endl;
 cout << maxNumber << endl;
 cout << "minNumber:" << endl;
 cout << minNumber << endl;
 cout << "H:" << endl;
 cout << H << endl;
 cout << "H1:" << endl;
 cout << H1 << endl;
 cout << "H2:" << endl;
 cout << H2 << endl;
 cout << "F1:" << endl;
 cout << F1 << endl;
 cout << "F2:" << endl;
 cout << F2 << endl;
 cout << "F3:" << endl;
 cout << F3 << endl;
 cout << "F4:" << endl;
 cout << F4 << endl;
 cout << "P1:" << endl;
 cout << P1 << endl;
 cout << "P2:" << endl;
 cout << P2 << endl;
 cout << "P3:" << endl;
 cout << P3 << endl;
 cout << "V1:" << endl;
 cout << V1 << endl;
 cout << "b1:" << endl;
 cout << b1 << endl;
 cout << "b2:" << endl;
 cout << b2 << endl;
 cout << "S3:" << endl;
 cout << S3 << endl;
 cout << "S6:" << endl;
 cout << S6 << endl;
 cout << "S8:" << endl;
 cout << S8 << endl;
 cout << "S10:" << endl;
 cout << S10 << endl;
 cout << "T1:" << endl;
 cout << T1 << endl;
 cout << "a1:" << endl;
 cout << a1 << endl;
 cout << "a2:" << endl;
 cout << a2 << endl;
 cout << "D3:" << endl;
 cout << D3 << endl;
 cout << "D4:" << endl;
 cout << D4 << endl;
 cout << "D5:" << endl;

MathVec++ User’s Reference Manual

 - 9 -

 cout << D5 << endl;
 cout << "norm1:" << endl;
 cout << norm1 << endl;
 cout << "condSmall:" << endl;
 cout << condSmall << endl;
 cout << "condLarge:" << endl;
 cout << condLarge << endl;
 cout << "det:" << endl;
 cout << det << endl;
 cout << "D7:" << endl;
 cout << D7 << endl;
 cout << "D7a:" << endl;
 cout << D7a << endl;
 cout << "sum2:" << endl;
 cout << sum2 << endl;
 cout << "sum3:" << endl;
 cout << sum3 << endl;
 //
 return 0;
}

4 Solving a linear system of equations with MathVec++

This example is not provided in ‘src’ folder. It shows how to solve a linear system of equations.
Although the solvers are especially designed for large sparse linear system, the following small
linear system is intended to demonstrate the usage of the solver function.

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// include the MATRIX-VECTOR template
#include "mathvec.h"

/**
* EXAMPLE OF SOLUTION OF LINEAR SYSTEMS IN MathVec++ *
**/

int main()
{
 Vec<double> kn(10); // vector containing the upper part of K by rows
 Vec<double> f(4); // right-hand side vector
 int stat = 0; // status of the solver execution
 // create CCS matrix structure
 kn(0) = 1.0;
 kn(1) = 0.5;
 kn(2) = 0.0;
 kn(3) = 0.0;
 kn(4) = 1.0;
 kn(5) = 0.5;
 kn(6) = 0.0;
 kn(7) = 1.0;
 kn(8) = 0.5;
 kn(9) = 1.0;
 // create right-hand side vector
 f(0) = 1.0;
 f(1) = 2.0;
 f(2) = 3.0;
 f(3) = 4.0;
 // solve the system
 Vec<double> soln = symmSparseLinearSolver(kn,f,&stat);
 if (stat != 0)
 {
 cout << "Error: Matrix might be singular." << endl;
 exit(1);
 }
 else
 cout << soln << endl;
 //
 return 0;
}

MathVec++ User’s Reference Manual

 - 10 -

It is also possible to create a full matrix instead of a vector format to use it with the following
function prototype:

const Vec<T> symmSparseLinearSolver(const Mat<T>& K, Vec<T>& f, int* stat)

For more details see ‘mathvec.h’ located in ‘src’ folder.

5 Acknowledgements

I am grateful to Evgenii Rudnyi from CADFEM GmbH, Germany, and Mark Hoemmen from UC
Berkeley for their valuable help on introducing me to general building of scientific libraries and
especially TAUCS library.

