

 MeshFree++

A C++ class that provides a unified meshfree basis
function computation

User’s Reference Manual

Version 1.0

September 23, 2009

MeshFree++ User’s Reference Manual

 - 1 -

MeshFree++: A C++ class that provides a unified meshfree basis function computation

Releases

1.0 Code released 09/23/09
Code version Description Date

Copyright and License

MeshFree++ 1.0, Copyright (c) 2009
by Alejandro A. Ortiz,
alortiz@ucdavis.edu
http://www.computationalmechanics.org/~aortizb
Department of Civil & Environmental Engineering,
University of California, Davis, CA 95616, U.S.A.
All Rights Reserved.

Your use or distribution of MeshFree++ or any derivative code implies that you
agree to this License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. This program is free software and you can choose any
of the following license terms:

1) GNU Lesser General Public License (LGPL) as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later
version. For details see copy of LGPL in folder License\gnu of this
distribution.

2) Alternatively, you may choose to comply with the following UMFPACK-style
license:

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED OR
IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program, provided that the
Copyright, this License, and the Availability of the original version is
retained on all copies. User documentation of any code that uses this code or
any derivative code must cite the Copyright, this License, the Availability
note, and "Used by permission". Permission to modify the code and to
distribute modified code is granted, provided the Copyright, this License, and
the Availability note are retained, and a notice that the code was modified is
included. This software is provided to you free of charge.

MeshFree++ uses MathVec++ 1.0. You must comply with MathVec++ license terms.
For details see folder License of this distribution.

MeshFree++ User’s Reference Manual

 - 2 -

TABLE OF CONTENTS

1 Scope of the manual ...3

2 Building MeshFree++..3

2.1 Building MeshFree++ under Windows..3

2.2 Building MeshFree++ under Linux/Unix..4

3 Using MeshFree++ ...4

3.1 MAXENT example..6

3.2 MLS example ...7

3.3 A catalog of public methods to retrieve information from the meshfree class8

4 MathVec++ template...10

5 Acknowledgements...15

6 References ...15

MeshFree++ User’s Reference Manual

 - 3 -

1 Scope of the manual

The aim of this manual is to explain how to use MeshFree++. I assume that you have
some background on meshfree methods. This is the first version of the meshfree class and its
capabilities include the computation of first order maximum entropy (maxent) basis functions
[1,2,3,4] and first order moving least square (mls) basis functions [5,6] along with their deriva-
tives. It is a generic code in the sense that it can compute the aforementioned basis functions in
one, two and three dimensions with just one code. If you need more details on meshfree meth-
ods, see additional References [7,8].

The complete source code of MeshFree++ can be downloaded from
http://www.computationalmechanics.org/~aortizb/codes.

2 Building MeshFree++

This manual explains how to build MeshFree++ under Windows® and Linux/Unix. MeshFree++
consists of two files available in ‘src’ folder: meshfree.cpp and meshfree.h. It has been written
using the matrix-vector template MathVec++ 1.0 which is the header file ‘mathvec.h’ located in
‘include\mathvec’ folder. MathVec++ uses TAUCS1 library which needs to be linked. I have
provided precompiled TAUCS libraries along with ATLAS libraries used by TAUCS, for both
Windows® and Linux in folder ‘libs\taucs’. You do not need to build them again unless you want
optimized libraries for your system. If you are in need of information on building TAUCS, you
may find more information at TAUCS manual and http://matrixprogramming.com/.

2.1 Building MeshFree++ under Windows

If you decide to build MeshFree++ in Windows®, I highly recommend using Microsoft Visual
Studio®. There is an express edition available at Microsoft® web site for free. Also, Profes-
sional edition of MVS is free for students. I have provided the MVS 2008 project for the Win-
dows version of MeshFree++ in this distribution. Unless you use other compiler there is nothing
more to do. See MeshFree++ project properties in the MVS 2008 project to find out includes
and linking options to precompiled TAUCS and ATLAS libraries. Note that runtime library under
C-C++ -> Code Generation has been specified to /MTd which is how precompiled TAUCS li-
braries were built. Also, LIBCMT library in Linker -> Input has been ignored since it conflicts
with TAUCS libraries. If you need to rebuild TAUCS libraries in MVS, please see
http://matrixprogramming.com/ for details. Then link them considering the observations pro-
vided above. Linking TAUCS libraries to MeshFree++ in a compiler other than MVS might re-
quire rebuilding of TAUCS libraries.

Once the MVS project is in your machine, then you can try the meshfree example I have
included in ‘src/main.cpp’. You just need to build the solution in the MVS GUI: Build -> Build
solution or by pressing F7. If you want to try a different example, the only thing you need to do
is to modify the code in main.cpp and rebuilt it. When you build or rebuild the code, an execu-
table file called ‘MeshFree++’ is placed in ‘bin’ folder. You have to run that executable from
command line (cmd). This will print the meshfree computation to the screen. Also, a file called
‘meshfreeresults.txt’ is placed in ‘bin’ folder which contains the same information that was
printed to the screen. Additionally, if needed, there will be a file called ‘messages.txt’ which
contains all warnings and errors that appeared during the meshfree computation. Alternatively,
you may want to just execute ‘MeshFree++’ by double-clicking on it. This will create the ‘mesh-
freeresults.txt’ and ‘messages.txt’ files.

There is another alternative to install MeshFree++ under Win32. For example, you may
use gcc compiler for Windows®, such as MinGW or Cygwin. Though, I will not cover these
options here since I have not tried a compiler other than MVS and it might require the rebuilding
of TAUCS libraries with gcc. If you need to do it, please download the source files from TAUCS
web site and consult TAUCS manual for more information.

1 TAUCS, A Library of Sparse Linear Solvers is used by permission of Sivan Toledo. Original files of TAUCS are avail-
able at http://www.tau.ac.il/~stoledo/taucs/.

MeshFree++ User’s Reference Manual

 - 4 -

2.2 Building MeshFree++ under Linux/Unix

Building MeshFree++ under Linux/Unix might be the easiest way. Once you have the
Linux/Unix version of MeshFree++ distribution in your machine, you just need to type ‘make’ or
‘make MeshFree++’ in the main folder of MeshFree++ distribution. You may find all the options
in the makefiles that are provided in the main folder and in ‘src’ folder. You need to modify the
paths to TAUCS and ATLAS libraries if you want to use your own libraries. Instructions are
provided in the makefile of ‘src’ folder.
 If you need to rebuild TAUCS libraries, download the source code from TAUCS web
site and read TAUCS manual for instructions. Building of TAUCS libraries in Linux/Unix is quite
straightforward.

3 Using MeshFree++

The meshfree class of MeshFree++ version 1.0 consists of the following:

A parent class:

• MeshFree class

Two child classes:

• Maxent class
• Mls class

Parent class MeshFree contains all the information that is common to meshfree basis functions
construction. Maxent class contains information that is particular to maximum entropy basis
functions. Similarly, Mls class contains information that is particular to moving least squares
basis functions. Using MeshFree++ is quite easy. You need to construct Maxent or Mls objects
from the available constructors for both child classes. You can only run a meshfree computation
form the child classes. You may attempt to create an object of the parent class MeshFree. The
latter will not run any meshfree computation as the parent class has not any method to do so.
Thus, unless you are implementing a new child class, you must always work with the child
classes to compute meshfree basis functions. All the data you may obtain from the meshfree
class after the meshfree basis functions construction will be available through an object of a
child class using public methods of the parent class MeshFree. The only constructors for each
of these child classes are:

 Maxent(int dim, int nNodes, const Mat<double>& nodeCoord,
 const Vec<double>& xSample, const Vec<double>& nodeSpacing,
 const string& weightName, double gamma, int order, int compute,
 bool autoIncreaseSupportSize, bool forceConsistencyCheck,
 bool variousSamplePoints, bool printAllResults,
 double rtol, int maxIter);

 Mls(int dim, int nNodes, const Mat<double>& nodeCoord,
 const Vec<double>& xSample, const Vec<double>& nodeSpacing,
 const string& weightName, double gamma, int order, int compute,
 bool autoIncreaseSupportSize, bool forceConsistencyCheck,
 bool variousSamplePoints, bool printAllResults);

Note that objects ‘Vec’ and ‘Mat’ are defined in MathVec++ template. For details see ‘math-
vec.h’ located in folder ‘include\mathvec’. A preview of MathVec++ capabilities and its usage is
provided in Section 4 of this manual. The parameters of the above constructors stand for:

dim = Problem dimension.

nNodes = Total number of nodes in the domain.

nodeCoord = Nodal coordinates.

MeshFree++ User’s Reference Manual

 - 5 -

xSample = Sample (evaluation) point.

nodeSpacing = Characteristic nodal spacing.

weightName = Name of the weight (kernel) function. Only
radial kernels are used: cubic, quartic,
gaussian or constant.

gamma = Support size parameter.

order = Order of the meshfree approximation.

compute = Specify if basis functions and their de-
rivatives will be computed (1, for basis
function only; and 2 for both).

autoIncreaseSupportSize = If true, support radius will be automati-
cally and repeatedly increased by 10% until
sufficient number of neighbors are avail-
able for evaluation at xSample.

forceConsistencyCheck = If true, it will force PU consistency check
of computed basis functions and their de-
rivatives, even if not needed.

variousSamplePoints = If true, it will append all output data to
previous output file. This might be useful
when meshfree computation at various sample
(evaluation) points is needed.

printAllResults = If true, it will print all meshfree compu-
tations to the screen and to output file.
If false, it will print to the screen and
to output file only if a PU consistency
check is required/needed.

rtol = Required Newton’s tolerance for maxent com-
putation.

maxIter = Maximum allowed Newton’s iterations in max-
ent computation.

Once you have created the Maxent or Mls object, you just need to compute the meshfree basis
functions with the following public method:

 object.computeMeshfree();

Apart from the output files, you may also retrieve the basis functions, basis functions deriva-
tives, list of contributing (neighbor) nodes and the number of contributing (neighbor) nodes with
the following public methods:

 object.phi(); // vector of doubles containing the meshfree basis
 // functions evaluated at xSample

 object.phiDer(); // matrix of doubles containing the meshfree basis
 // functions evaluated at xSample

 object.contribute(); // vector of integers containing the indices of the
 // contributing (neighbor) nodes at xSample

 object.length(); // integer which is the length of contribute, i.e.,
 // the number of contributing nodes

or entry by entry as

 object.phi(ind); // a double

MeshFree++ User’s Reference Manual

 - 6 -

 object.phiDer(ind_1,ind_2); // a double

 object.contribute(ind); // a double

where ind, ind_1 and ind_2 are 0-based indices to the entries in the vector and matrices. A
complete catalog of public methods to retrieve information from the meshfree class is given in
Section 3.3.

3.1 MAXENT example

The following example can be found in ‘main.cpp’ located in ‘src’ folder. You just need to code
there if you want to vary the constructor parameters. You can also put ‘main.cpp’ (or even give
it a different name) outside that folder provided that you compile and link the source code ac-
cordingly. For instance, the available makefile for Linux/Unix has been written for ‘main.cpp’
located inside ‘src’ folder.

#include <iostream>
#include <string>
#include <vector>

using namespace std;

#include "meshfree.h"

int main()
{
 /***
 * EXAMPLE OF MAXENT COMPUTATION USING THE MESHFREE CLASS *
 ***/
 int dim = 3; // problem dimension, must be <= 3
 int nNodes = 8; // total number of nodes in the domain
 string weightName = "cubic"; // name of the weight function (prior in
 // maxent context): "cubic", "quartic",
 // "gaussian" or "constant"
 double gamma = 3.0; // support size parameter. Typical values: 1
 // to 8 (gaussian), 1 to 3 (quartic or cubic)
 double rtol = 1e-8; // required tolerance for newton method in
 // maxent computation
 int maxIter = 20; // maximum allowed number of newton's
 // iterations
 int compute = 2; // =1 for basis functions, =2 for both basis
 // functions and their derivatives
 bool printAllResults = 1; // =1 plot a summary of the maxent
 // computation, =0 nothing is plotted but in
 // case of maxent failure
 int order = 1; // order of the approximation
 bool forceConsistencyCheck = 1; // =0, don't run consistency check if not
 // needed. =1, run consistency check even if
 // not needed
 bool autoIncreaseSupportSize = 1; // =1, auto increase support size when there
 // are insufficient neighbors. =0, otherwise

 Mat<double> nodeCoord(8,3); // nodal coordinates
 nodeCoord(0,0) = 0.0; nodeCoord(0,1) = 0.0; nodeCoord(0,2) = 0.0;
 nodeCoord(1,0) = 1.0; nodeCoord(1,1) = 0.0; nodeCoord(1,2) = 0.0;
 nodeCoord(2,0) = 1.0; nodeCoord(2,1) = 1.0; nodeCoord(2,2) = 0.0;
 nodeCoord(3,0) = 0.0; nodeCoord(3,1) = 1.0; nodeCoord(3,2) = 0.0;
 nodeCoord(4,0) = 0.0; nodeCoord(4,1) = 0.0; nodeCoord(4,2) = 1.0;
 nodeCoord(5,0) = 1.0; nodeCoord(5,1) = 0.0; nodeCoord(5,2) = 1.0;
 nodeCoord(6,0) = 1.0; nodeCoord(6,1) = 1.0; nodeCoord(6,2) = 1.0;
 nodeCoord(7,0) = 0.0; nodeCoord(7,1) = 1.0; nodeCoord(7,2) = 1.0;

 Vec<double> xSample(3); // sample point
 xSample(0) = 0.25;
 xSample(1) = 0.25;
 xSample(2) = 0.25;

 Vec<double> nodeSpacing(1,0.6); // characteristic nodal spacing. can set
 // different values for every node in the domain
 // by changing the length of the vector and
 // setting up the values of the vector entries

MeshFree++ User’s Reference Manual

 - 7 -

 bool variousSamplePoints = 0; // =0, output file will be deleted in a further
 // computation
 // =1, append information to the output file
 // (example: a loop over several evaluation
 // points)

 // create a maxent object
 Maxent maxentObj(dim,nNodes,nodeCoord,xSample,nodeSpacing,weightName,gamma,
 order,compute,autoIncreaseSupportSize,forceConsistencyCheck,
 variousSamplePoints,printAllResults,rtol,maxIter);

 // start maxent computation
 maxentObj.computeMeshfree();

 // retrieve what you need from the meshfree class
 // in order to use it in a meshfree code
 cout << "**" << endl;
 cout << " MAXENT OBJECT " << endl;
 cout << "THE FOLLOWING WAS OBTAINED FROM THE MESHFREE PARENT CLASS:" << endl;
 cout << "**" << endl;
 cout << "BASIS FUNCTIONS:" << endl;
 Vec<double> phi = maxentObj.phi(); // type must be DOUBLE
 cout << phi << endl << endl;

 cout << "GRADIENT OF BASIS FUNCTIONS:" << endl;
 Mat<double> phiDer = maxentObj.phiDer(); // type must be DOUBLE
 cout << phiDer << endl << endl;

 cout << "INDICES OF THE CONTRIBUTING NODES (NEIGHBORS):" << endl;
 Vec<int> contribute = maxentObj.contribute(); // type must be INTEGER
 cout << contribute << endl << endl;

 cout << " NUMBER OF CONTRIBUTING NODES:" << endl;
 int length = maxentObj.length(); // type must be INTEGER
 cout << length << endl;
 //
 return 0;
}

3.2 MLS example

The following example can also be found in ‘main.cpp’ located in ‘src’ folder.

#include <iostream>
#include <string>
#include <vector>

using namespace std;

#include "meshfree.h"

int main()
{
 /***
 * EXAMPLE OF MLS COMPUTATION USING THE MESHFREE CLASS *
 ***/
 int dim = 3; // problem dimension, must be <= 3
 int nNodes = 8; // total number of nodes in the domain
 string weightName = "cubic"; // name of the weight function (prior in
 // maxent context): "cubic", "quartic",
 // "gaussian" or "constant"
 double gamma = 3.0; // support size parameter. Typical values: 1
 // to 8 (gaussian), 1 to 3 (quartic or cubic)
 int compute = 2; // =1 for basis functions, =2 for both basis
 // functions and their derivatives
 bool printAllResults = 1; // =1 plot a summary of the maxent
 // computation, =0 nothing is plotted but in
 // case of maxent failure
 int order = 1; // order of the approximation
 bool forceConsistencyCheck = 1; // =0, don't run consistency check if not
 // needed. =1, run consistency check even if
 // not needed

MeshFree++ User’s Reference Manual

 - 8 -

 bool autoIncreaseSupportSize = 1; // =1, auto increase support size when there
 // are insufficient neighbors. =0, otherwise

 Mat<double> nodeCoord(8,3); // nodal coordinates
 nodeCoord(0,0) = 0.0; nodeCoord(0,1) = 0.0; nodeCoord(0,2) = 0.0;
 nodeCoord(1,0) = 1.0; nodeCoord(1,1) = 0.0; nodeCoord(1,2) = 0.0;
 nodeCoord(2,0) = 1.0; nodeCoord(2,1) = 1.0; nodeCoord(2,2) = 0.0;
 nodeCoord(3,0) = 0.0; nodeCoord(3,1) = 1.0; nodeCoord(3,2) = 0.0;
 nodeCoord(4,0) = 0.0; nodeCoord(4,1) = 0.0; nodeCoord(4,2) = 1.0;
 nodeCoord(5,0) = 1.0; nodeCoord(5,1) = 0.0; nodeCoord(5,2) = 1.0;
 nodeCoord(6,0) = 1.0; nodeCoord(6,1) = 1.0; nodeCoord(6,2) = 1.0;
 nodeCoord(7,0) = 0.0; nodeCoord(7,1) = 1.0; nodeCoord(7,2) = 1.0;

 Vec<double> xSample(3); // sample point
 xSample(0) = 0.25;
 xSample(1) = 0.25;
 xSample(2) = 0.25;

 Vec<double> nodeSpacing(1,0.6); // characteristic nodal spacing. can set
 // different values for every node in the domain
 // by changing the length of the vector and
 // setting up the values of the vector entries
 bool variousSamplePoints = 0; // =0, output file will be deleted in a further
 // computation
 // =1, append information to the output file
 // (example: a loop over several evaluation
 // points)

 // create a mls object
 Mls mlsObj(dim,nNodes,nodeCoord,xSample,nodeSpacing,weightName,gamma,
 order,compute,autoIncreaseSupportSize,forceConsistencyCheck,
 variousSamplePoints,printAllResults);

 // start mls computation
 mlsObj.computeMeshfree();

 // retrieve what you need from the meshfree class
 // in order to use it in a meshfree code
 cout << "**" << endl;
 cout << " MLS OBJECT " << endl;
 cout << "THE FOLLOWING WAS OBTAINED FROM THE MESHFREE PARENT CLASS:" << endl;
 cout << "**" << endl;
 cout << "BASIS FUNCTIONS:" << endl;
 phi = mlsObj.phi();
 cout << phi << endl << endl;

 cout << "GRADIENT OF BASIS FUNCTIONS:" << endl;
 phiDer = mlsObj.phiDer();
 cout << phiDer << endl << endl;

 cout << "INDICES OF THE CONTRIBUTING NODES (NEIGHBORS):" << endl;
 contribute = mlsObj.contribute();
 cout << contribute << endl << endl;

 cout << " THE NUMBER OF CONTRIBUTING NODES:" << endl;
 length = mlsObj.length(); // type must be INTEGER
 cout << length << endl;
 //
 return 0;
}

3.3 A catalog of public methods to retrieve information from the meshfree class

As a user of the meshfree class, you can run meshfree basis functions computations only from
objects of the child classes. After meshfree computation, you may only retrieve data through an
object of a child class using public methods of the parent class MeshFree. The following are all
public methods in MeshFree class that allow you to obtain computed data. For instance, if you
create a Maxent object ‘mxt’, then you can use any of the public methods listed below as

 mxt.name_of_the_method(…)

MeshFree++ User’s Reference Manual

 - 9 -

 Return:

const string name() const Name of the meshfree type.

int dim() const Problem dimension.

int nNodes() const Total number of nodes.

double gamma() const Support size parameter gamma.

int order() const Order of the approximation.

int compute() const Value of compute.

bool variousSamplePoints() const Value of variousSamplePoints.

double nodeSpacing(int index) const
Entry at index (0-based) in charac-
teristic nodal spacing vector.

const Vec<double> nodeSpacing() const Characteristic nodal spacing vector.

double nodeCoord(int index_i, int index_j) const
Entry at (index_i,index_j) (0-based)
of nodal coordinates matrix.

double nodeCoordContribute(int index_i, int index_j) const

Entry at (index_i,index_j) (0-based)
of the contributing nodal coordinates
matrix.

const Mat<double> nodeCoord() const Nodal coordinates matrix.

const Mat<double> nodeCoordContribute()const
Nodal coordinates matrix of contrib-
uting nodes.

double xSample(int index) const
Entry at index (0-based) of sample
(evaluation) point.

const Vec<double> xSample() const Sample (evaluation) point vector.

double xShift(int index_i, int index_j) const

Entry at (index_i,index_j) (0-based)
of the shifted nodal coordinates
matrix.

double xShiftContribute(int index_i, int index_j) const

Entry at (index_i,index_j) (0-based)
of the shifted nodal coordinate
matrix of contributing nodes.

const Mat<double> xShift() const Shifted nodal coordinates matrix.

const Mat<double> xShiftContribute() const
Shifted nodal coordinates matrix of
contributing nodes.

double phi(int index) const
Entry at index (0-based) of basis
functions vector.

const Vec<double> phi() const Basis functions vector.

double phiDer(int index_i, int index_j) const
Entry at (index_i,index_j) (0-based)
of basis function derivatives matrix.

const Mat<double> phiDer() const Basis function derivatives matrix.

int contribute(int index) const
Entry at index (0-based) of contrib-
ute vector.

const Vec<int> contribute() const
Contributing vector containing the
list of contributing (neighbor) nodes.

int length() const
Number of contributing (neighbor)
nodes.

double weightFun(int index) const
Entry at index (0-based) of weight
(kernel) function vector.

const Vec<double> weightFun() const
Vector containing weight (kernel)
functions associated to each node.

MeshFree++ User’s Reference Manual

 - 10 -

double weightFunDer(int index_i, int index_j) const

Entry at (index_i,index_j) (0-based)
of weight (kernel) function deriva-
tives matrix.

const Mat<double> weightFunDer() const
Matrix containing weight (kernel)
function derivatives associated to
each node.

If you are in need of other public methods, please consult the class header ‘meshfree.h’ and
the class definition file ‘meshfree.cpp’ both located in ‘src’ folder of this distribution. Every func-
tion definition in ‘meshfree.cpp’ is preceded by a brief description of what the function does.

4 MathVec++ template

MeshFree++ vector and matrices operations are based on MathVec++ 1.0. That means you
should also use it if you want to work with this meshfree class. If you elect to use your own
matrix-vector class, or any other library or even std::vector class, you need at least to declare
the meshfree objects and retrieve the basis functions, derivatives and contributing information
with MathVec++ objects. Then, you can use MathVec++ to manipulate the meshfree object
throughout your code, or you have to copy all the entries of ‘Mat’ and ‘Vec’ objects to your spe-
cific matrix and vector objects or arrays. Following, I provide an example code using Math-
Vec++ where you may find some of (not all) its capabilities. If you want to know all the capabili-
ties, see “mathvec.h” in folder ‘include/mathvec’.

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;

// include the MATRIX-VECTOR template
#include "mathvec.h"

/**
* MAIN FUNCTION TO TEST THE MATRIX-VECTOR TEMPLATE MathVec++ *
**/

int main()
{
 // initiate a vector of three components (all elements are 2)
 Vec<double> x(3,2); // create a vector of size 3 with all entries = 2

 // modifiy components of vector x, so that all are 3
 x(0) = 3;
 x(1) = 3;
 x(2) = 3;

 // multiply a vector by a scalar
 Vec<double> d1 = 2*x;
 Vec<double> d2 = 2.2*x;
 Vec<double> d3 = x*2;
 Vec<double> d4 = x*2.2;

 // divide a vector by a scalar
 Vec<double> c1 = x/2;
 Vec<double> c2 = x/2.2;

 // create an empty vector and use push_back method to fill it
 Vec<double> c3; // create an empty vector which has to be filled with numbers
 // before doing any other operation.
 // let's make the following vector: {2.3, 4.7, 8}
 c3.push_back(2.3); // push the first number
 c3.push_back(4.7); // push the second number
 c3.push_back(8); // push the third number

 // generate a vector of all entries equal to a number
 Vec<double> c4 = c3; // let's copy c3 into c4 (so, c4 = {2.3, 4.7, 8})
 c4 = 7.5; // change all entries of c4 to 7.5

 // substract two vectors
 Vec<double> e1 = x - 2*x;

MeshFree++ User’s Reference Manual

 - 11 -

 // add two vectors
 Vec<double> e2 = x + x;

 // multiply the current vector by a scalar
 Vec<double> y = x;
 y *= 4; // can also do: Vec<double> y1 = (y *= 4);

 // divide the current vector by a scalar
 Vec<double> z = x;
 z /= 2.5;

 // dot (scalar) product
 Vec<double> t(3); // create a vector of size 3 with all entries = default for
 // type double
 t(0) = 2; // modify vector entries
 t(1) = 2;
 t(2) = 2;
 double scalar = x*t; // dot product

 // euclidean norm of a vector
 Vec<double> k = t;
 double enorm = k.norm();

 // substract a vector from the current vector
 Vec<double> s1(4,5); // create a vector of size 4, all entries = 5
 Vec<double> s2(4,6); // create a vector of size 4, all entries = 6
 Vec<double> s3 = (s1 -= s2); // or simply s1 -= s2 and then print the value of
 // s1

 // add a vector from the current vector
 Vec<double> m1(4,5); // create a vector of size 4, all entries = 5
 Vec<double> m2(4,6); // create a vector of size 4, all entries = 6
 m1 += m2; // can also do: Vec<double> m3 = (m1 += m2);

 // the negative of a vector
 Vec<double> m4(4,1); // create a vector of size 4, all entries = 1
 Vec<double> m5 = -(m4);

 // sum all entries of a vector
 Vec<double> m6(5,1); // create a vector of size 5, all entries = 1
 m6(2) = 6.2;
 double sum1 = m6.sum();

 // test begin() and end() iterators with max() and min() functions
 Vec<double> m7;
 m7.push_back(2.7);
 m7.push_back(1.2);
 m7.push_back(3.5);
 m7.push_back(4.256);
 double maxNumber = m7.max();
 double minNumber = m7.min();

 // declare a matrix
 Mat<double> H(3,3,6); // 3x3 matrix, all entries = 6
 H(0,0) = 1; // modify
 H(0,1) = 0; // to create
 H(0,2) = 0; // an
 H(1,0) = 0; // identity matrix
 H(1,1) = 1;
 H(1,2) = 0;
 H(2,0) = 0;
 H(2,1) = 0;
 H(2,2) = 1;

 // create an empty matrix and use push_back method to fill it
 Mat<double> H1; // create an empty matrix which has to be filled with row
 // vectors
 // before doing any other operation.
 // let's do it for a 3x3 matrix, all entries = 4.7
 Vec<double> vec1(3,4.7); // the row vector, all entries = 4.7
 H1.push_back(vec1); // push the first row
 H1.push_back(vec1); // push the second row
 H1.push_back(vec1); // push the third row

 // create a matrix filled of a number

MeshFree++ User’s Reference Manual

 - 12 -

 Mat<double> H2 = H1; // let's copy H1 into H2 (so 3x3 matrix, all entries = 4.7)
 H2 = 3.9; // let's change all entries of H1 to 3.9

 // add two matrices
 Mat<double> M(2,2); // 2x2 matrix all entries = default value for type double
 Mat<double> N(2,2,2); // 2x2 matrix all entries are = 2
 M(0,0) = 4; // modify
 M(0,1) = 2; // the entries
 M(1,0) = 2; // of
 M(1,1) = 4; // the matrix
 Mat<double> F1 = M + N;

 // substract two matrices
 Mat<double> F2 = M - N;

 // add a matrix to the current matrix
 Mat<double> F3 = (M += N); // or simply M += N and then print the value of M

 // substract a matrix to the current matrix
 Mat<double> F4 = (N -= N); // or simply N -= N and then print the value of N

 // multiply a matrix by a scalar
 Mat<double> P(3,3,2); // 3x3 matrix, all entries are = 2
 Mat<double> P1 = P * 2.2;

 // multiply a scalar by a matrix
 Mat<double> P2 = 2.2 * P;

 // multiply current matrix by a scalar
 Mat<double> P3 = (P *= 3);

 // divide a matrix by a scalar
 Mat<double> V(3,3,2); // 3x3 matrix, all entries are = 2
 Mat<double> V1 = V / 1.5;

 // multiply a matrix by a vector
 Mat<double> Z(3,2,1); // 3x2 matrix, all entries are = 1
 Vec<double> b(2,3); // vector of size 2, all entries = 3
 Vec<double> b1 = Z*b;

 // multiply a vector by a matrix
 Mat<double> J = Z.transpose();
 Vec<double> b2 = b*J;

 // multiply a matrix by a matrix
 Mat<double> S1(2,3,2); // 2x3 matrix, all entries = 2
 Mat<double> S2(4,2,2); // 4x2 matrix, all entries = 2
 Mat<double> S3 = S2 * S1;

 // multiply current matrix by a matrix
 Mat<double> S4(3,2,2); // 3x2 matrix, all entries = 2
 Mat<double> S5(2,3,3); // 2x2 matrix, all entries = 3
 Mat<double> S6 = (S4 *= S5); // or simply S4 *= S5 and then print the value of
 // S4

 // the negative of a matrix
 Mat<double> S7(3,3,1); // 3x3 matrix, all entries = 1
 Mat<double> S8 = -(S7);

 // transpose of a matrix
 Mat<double> S9(3,3,6); // 3x3 matrix, all entries = 6
 S9(2,0) = 1; // change
 S9(2,1) = 1; // last row
 S9(2,2) = 1; // of S9
 Mat<double> S10 = S9.transpose(); // will NOT change S9. it only returns a new
 // object

 // transform the current matrix into its transpose
 Mat<double> T1(3,2,8); // 3x3 matrix, all entries = 8
 T1(2,0) = 1; // change
 T1(2,1) = 1; // last row
 T1.makeTranspose(); // will change T1 and return a reference, so can also do:
 // Mat<T> T2 = T1.makeTranspose(); in which case both
 // T2 and T1 will be the transposed matrix

 // get a row of a matrix

MeshFree++ User’s Reference Manual

 - 13 -

 Mat<double> D1(3,3,7); // 3x3 matrix, all entries = 7
 D1(2,0) = 2; // change
 D1(2,1) = -3; // the third row
 D1(2,2) = -6; // of D1
 Vec<double> a1 = D1.getRow(3); // the third row. note that the the number of
 // rows starts from 1, but the index from 0.

 // get a column of a matrix
 Mat<double> D2(3,3,7); // 3x3 matrix, all entries = 7
 D2(0,1) = 1; // change
 D2(1,1) = -4; // the second column
 D2(2,1) = -1; // of D2
 Vec<double> a2 = D2.getCol(2); // the second row. note that the the number of
 // rows starts from 1, but the index from 0.

 // transform a matrix into a null matrix
 Mat<double> D3(3,3,2.4); // 3x3 matrix, all entries = 2.4
 D3.makeNull(); // change the entries of D3 and returns a reference,
 // so can also do: Mat<double> D4 = D3.makeNull();
 // in which case both D4 and D3 are null matrices.

 // transform a matrix into a unit matrix
 Mat<double> D4(3,3,6.2); // 3x3 matrix, all entries = 6.2
 D4.makeUnit(); // change the entries of D4 and returns a reference,
 // so can also do: Mat<double> D5 = D4.makeUnit();
 // in which case both D5 and D4 are unit matrices.

 // transform a matrix into an identity matrix
 Mat<double> D5(3,3,9.8); // 3x3 matrix, all entries = 9.8
 D5.makeIdentity(); // change the entries of D5 and returns a reference,
 // so can also do: Mat<double> D6 = D5.makeIdentity();
 // in which case both D6 and D5 are identity matrices.

 // compute the 1-norm of a square matrix
 // (naive code ... not good for large matrices)
 Mat<double> D6(2,2); // 2x2 matrix, all entries = default double type
 D6(0,0) = 1; // set the entries
 D6(0,1) = 1; // such that
 D6(1,0) = 1; // the matrix is
 D6(1,1) = 1.000000001; // ill-conditioned
 double norm1 = D6.norm1();

 // compute the condition number of a small square ill-conditioned matrix
 double condSmall = D6.smallCond1(); // small matrices are up to 3x3

 // compute the condition number of a square ill-conditioned matrix
 // using the function for large matrices
 double condLarge = D6.largeSymmCond1();

 // compute the determinant of a square ill-conditioned matrix.
 // small matrix max size = 3x3
 double det = D6.smallDet();

 // compute the inverse of a small square ill-conditioned matrix
 Mat<double> D7 = D6.smallInv(); // small matrices are up to 3x3

 // compute the inverse using the function for large square matrix
 Mat<double> D7a = D6.largeSymmInv();

 // sum all the entries of a row of a matrix
 Mat<double> D8(4,4,1); // 4x4 matrix, all entries = 1
 D8(0,1) = 3.2;
 D8(1,0) = 6.2;
 double sum2 = D8.sumRow(2); // the second row. note that the the number of
 // rows starts from 1, but the index from 0.

 // sum all the entries of a column of a matrix
 double sum3 = D8.sumCol(2); // the second column. note that the the number of
 // columns starts from 1, but the index from 0.

 // print size of a vector
 cout << "Size of x: " << x.size() << endl;
 cout << "Size of d1: " << d1.size() << endl;

 // print size of a matrix
 cout << "Number of rows of H: " << H.rows() << endl;

MeshFree++ User’s Reference Manual

 - 14 -

 cout << "Number of columns of H: " << H.cols() << endl;

 // print vectors, matrices and variables
 cout << "x:" << endl;
 cout << x << endl;
 cout << "d1:" << endl;
 cout << d1 << endl;
 cout << "d2:" << endl;
 cout << d2 << endl;
 cout << "d3:" << endl;
 cout << d3 << endl;
 cout << "d4:" << endl;
 cout << d4 << endl;
 cout << "c1:" << endl;
 cout << c1 << endl;
 cout << "c2:" << endl;
 cout << c2 << endl;
 cout << "c3:" << endl;
 cout << c3 << endl;
 cout << "c4:" << endl;
 cout << c4 << endl;
 cout << "e1:" << endl;
 cout << e1 << endl;
 cout << "e2:" << endl;
 cout << e2 << endl;
 cout << "y:" << endl;
 cout << y << endl;
 cout << "z:" << endl;
 cout << z << endl;
 cout << "t:" << endl;
 cout << t << endl;
 cout << "Dot product: " << scalar << endl;
 cout << "Euclidean norm: " << enorm << endl;
 cout << "s1:" << endl;
 cout << s1 << endl;
 cout << "s3:" << endl;
 cout << s3 << endl;
 cout << "m1:" << endl;
 cout << m1 << endl;
 cout << "m5:" << endl;
 cout << m5 << endl;
 cout << "sum1:" << endl;
 cout << sum1 << endl;
 cout << "maxNumber:" << endl;
 cout << maxNumber << endl;
 cout << "minNumber:" << endl;
 cout << minNumber << endl;
 cout << "H:" << endl;
 cout << H << endl;
 cout << "H1:" << endl;
 cout << H1 << endl;
 cout << "H2:" << endl;
 cout << H2 << endl;
 cout << "F1:" << endl;
 cout << F1 << endl;
 cout << "F2:" << endl;
 cout << F2 << endl;
 cout << "F3:" << endl;
 cout << F3 << endl;
 cout << "F4:" << endl;
 cout << F4 << endl;
 cout << "P1:" << endl;
 cout << P1 << endl;
 cout << "P2:" << endl;
 cout << P2 << endl;
 cout << "P3:" << endl;
 cout << P3 << endl;
 cout << "V1:" << endl;
 cout << V1 << endl;
 cout << "b1:" << endl;
 cout << b1 << endl;
 cout << "b2:" << endl;
 cout << b2 << endl;
 cout << "S3:" << endl;
 cout << S3 << endl;
 cout << "S6:" << endl;

MeshFree++ User’s Reference Manual

 - 15 -

 cout << S6 << endl;
 cout << "S8:" << endl;
 cout << S8 << endl;
 cout << "S10:" << endl;
 cout << S10 << endl;
 cout << "T1:" << endl;
 cout << T1 << endl;
 cout << "a1:" << endl;
 cout << a1 << endl;
 cout << "a2:" << endl;
 cout << a2 << endl;
 cout << "D3:" << endl;
 cout << D3 << endl;
 cout << "D4:" << endl;
 cout << D4 << endl;
 cout << "D5:" << endl;
 cout << D5 << endl;
 cout << "norm1:" << endl;
 cout << norm1 << endl;
 cout << "condSmall:" << endl;
 cout << condSmall << endl;
 cout << "condLarge:" << endl;
 cout << condLarge << endl;
 cout << "det:" << endl;
 cout << det << endl;
 cout << "D7:" << endl;
 cout << D7 << endl;
 cout << "D7a:" << endl;
 cout << D7a << endl;
 cout << "sum2:" << endl;
 cout << sum2 << endl;
 cout << "sum3:" << endl;
 cout << sum3 << endl;
 //
 return 0;
}

5 Acknowledgements

I am grateful to Evgenii Rudnyi from CADFEM GmbH, Germany, and Mark Hoemmen from UC
Berkeley for their valuable help on introducing me to general building of scientific libraries and
especially TAUCS library.

6 References

[1] Sukumar N. Construction of polygonal interpolants: a maximum entropy approach. Interna-

tional Journal for Numerical Methods in Engineering 2004; 61(12):2159-2181.

[2] Arroyo M, Ortiz M. Local maximum-entropy approximation schemes: a semaless bridge
between finite elements and meshfree methods. International Journal for Numerical Methods
in Engineering 2006; 65(13):2167-2202.

[3] Sukumar N, Wright R.W. Overview and construction of meshfree shape functions: From
moving least squares to entropy approximants. International Journal for Numerical Methods
in Engineering 2007; 70(2):181-205.

[4] Yau L.L, Sukumar N, Kunnath S.K. Meshfree co-rotational formulation for two-dimensional
continua. International Journal for Numerical Methods in Engineering 2009; 79(8):979-1003.

[5] Belytschko T, Lu Y.Y, Gu L. Element-free Galerkin methods. International Journal for
Numerical Methods in Engineering 1994; 37(2):229-256.

[6] Dolbow J, Belytschko T. An introduction to programming the meshless element free Galerkin
method. Archives of Computational Methods in Engineering 1998; 5(3):207-242.

MeshFree++ User’s Reference Manual

 - 16 -

[7] Li S, Liu W.K. Meshfree and particle methods and their applications. Applied Mechanics

Reviews 2002; 55(1):1-34

[8] Fries TP, Matthies HG. Classification and overview of meshfree methods. Technical Report
Informatikbericht-Nr. 2003-03, Institute of Scientific Computing, Technical University Braun-
schweig, Braunschweig, Germany, 2004.

